
ISRAEL JOURNAL OF MATHEMATICS, Vol. 45, No 1, 1983 

THE DOUBLE CENTRALIZER THEOREM 
FOR DIVISION ALGEBRAS 

BY 

EFRAIM P. A R M E N D A R I Z  AND JAE KEOL P A R K  

ABSTRACT 

Assume V is a finite-dimensional vector space over a division ring D having 
center F. It is shown that if T E Endo (V) is algebraic over F then the double 
centralizer C(C(T)) of T is the set F[T] of all polynomials in T with 
coefficients from F. Consequently, each n x n matrix ring over D is an algebraic 
F-algebra if and only if C(C(T)) = F[T]  for all T and all finite-dimensional V. 

Let D be a division ring with center F and let V be a finite dimensional (left) 

vector space over D. For any subset X of the algebra Endo(V) of D- 

endomorphisms of V, we denote the centralizer of X in Endo (V) by 

C(X) = {B E Endo (V) IAB = BA for all A E X}. 

In particular, for T in Endo(V) the centralizer C(T) of T is the set of all 

D-endomorphisms of V which commute with T and the double centralizer 
C(C(T)) of T is the set of all D-endomorphisms which commute with every 

D-endomorphism which commutes with T. 

When D is commutative, the double centralizer theorem, C(C(T))= F[T] 
for every D-endomorphism T of V, is a well-known classical theorem ([6] and 

[8, p. 106]). 

In the noncommutative division ring case, R. Carlson and C. Cullen [2] have 

established this theorem when D is the real quarternion division algebra. 

Moreover, W. Werner [9] has extended this result to the case when D is a finite 

dimensional central division algebra. 

But we note that the double centralizer theorem may not be true in the 

general division algebra case. In particular, if the vector space V is D itself and 

C(C(T)) = F[T], T is necessarily algebraic over F, since T -1 is in C(C(T)). 
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Thus if D has an element transcendental over its center F, then C(C(T)) 
properly contains F[T] (compare with [7]). 

However, in this paper we will obtain the double centralizer theorem in the 

case when the given D-endomorphism T of V is algebraic over F. Furthermore, 

as an application of this general result, we show the equivalence of the double 

centralizer property and the algebraicity of Mat,  (D), the n x n matrix algebra 

over D. 

We start with the following well-known 

LEMMA 1. For a two-sided ideal I of D[x ] there exists a monic polynomial 
[(x) in F[x] such that I = D[x][(x).  In particular, if I is prime, then f (x)  is 
irreducible in F[x ]. 

PROOF. Since D[x] is a principal (left and right) ideal domain, there is a 

monic polynomial [(x) in D[x] of least degree such that I = D[x]f(x) .  For any 

d E D, r(x) = d f ( x ) - f ( x ) d  ~ I and deg r(x) < deg/(x) .  Hence r(x) = 0 and so 

/(x) F[x 1. [] 

For a left ideal A of a ring R, I ( A )  = {r ~ R [Ar C_ A } is a subring of R and 

I (A  ) is the largest subring of R in which A is a two-sided ideal. We call I (A  ) the 

idealizer of A in R. 

LEMMA 2. Let R be a ring with identity and A be a left ideal. Then 
E n d R ( R / A ) ~ I ( A ) / A .  That is, every R-endomorphism of R / A  is a righ, 
multiplication by an element of I (A  ). 

PROOF. See e.g. [3, p. 24]. ['- 

Let Ann(M) denote the annihilator of M in D [x ], which is a two-sided idea 

of D[x]. 

THEOREM 3. Let V be a finite dimensional left vector space over D. Ther 
C(C(T))  = F[T] for every T E Endo (V) which is algebraic over F. 

PROOF. For Y. dix i E D[x] and v E V, define 

Then V is a left D [x ]-module and Ann(V) ~ 0 since T is algebraic over F. The~ 
C(T)=Endo~x~(V), hence, in order to calculate C(C(T)) we are actualF 

determining the center of the ring EndoH(V).  Now V can be expressed as 

direct sum of cyclic D [x ]-modules, V ~ D Ix ]/ql ~) " " ~ D [x ]/qk where each ,  
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is a left ideal of D[x] and q, C q 2 C ' . .  Cqk [4, chapter 3]. By Lemma 2, each 

D Ix ]-endomorphism of D Ix ]/q~ is given by a right multiplication by an element 

of I(q,) and I(q,) = D Ix I only if q, is an ideal of D [x ]. Since it is not immediately 

evident that the q, 's can be chosen to be ideals of D[x], we will replace V and T 

by a module W and linear transformation To so that the cyclic decomposition of 

W is given by ideals of D [ x l  and C(C(To))~-C(C(T))  as F-algebras. We 

proceed to the details. 

Put B --- Ann(V). Then by Lemma 1, there is a non-zero polynomial f ( x )  
F[x] such that B = D[x] f (x ) .  

Decompose [(x ) = p~(x )",pz(x )"2 . . . p, (x )". into monic irreducible polyno- 

mials in F[x], where m~, . . . ,  m, are positive integers. 

Let 

and let 

B~ = Ann(p~ (x)",D[x]), 

V (') = B ,V  for i = 1,2,3, �9 �9 n. 

Then V ~ ~)E~=, V ~ as left D[x]-modules and Ann(V ('~) = D[x]p, (x) m,. In 
particular, each V ") is T-invariant. 

For i = 1, 2,�9 -, n, we have a decomposition 

V "~ --- W ~ ~3 W~ �9 W "~'~ 

into indecomposable cyclic D [x ]-modules W (~a), 1 _--< j =< k, and Ann(W ('')) = 

D [x ]p, (x)'~ for suitable positive integers e (i, j )  with m, = e (i, 1) >-- e (i, 2) >_- 

�9 . .  ->_ e (i, k,). Again, each W ~ is T-invariant. 

By [4, theorem 20, p. 451, for i = 1,.- -, n we have a decomposition 

D [ x l  _ D I x l  
O[x]p,(x)  "(''' - ~ ~" O[x]q,j(x) " 

where the sum is finite and D [x ]/D [x ]q,j (x) is an indecomposable D [x ]-module 
which is isomorphic to W ('a) for j = 1, �9 ., k,. 

Now let 

,~l j=l D[x]p,(x)  "'') " 

Thus W is a direct sum of modules Uq and each Uq is a direct sum of a finite 

number of copies of the indecomposable D [x ]-module W ('~). Hence the 

indecomposable direct summands of W and V coincide. We use T to define a 
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D-endomorphism To on W as follows. Each U,, is a direct sum of T-invariant 

subspaces. Thus To on U,I is the direct sum of T applied on each summand. In 

turn W is a direct sum of the U, I so To on W is the direct sum of To on the U,I. 
Then it may be easily checked that f(To)=-O on W, since f(T)=-O on V. 

Moreover, F[T]-~ F[To] as F-algebras via the map which sends T to To and 

fixes F~ 

For E d~x' E D Ix] and w ~ W, define an operation �9 by 

Then this operation �9 is just the left D [x ]-module operation on W, since the left 

D [x ]-module V is just the D [x ]-module ( ~  E D [x ]/D [x ]q,i (x). 
We rearrange summands of W so that 

w=e • 
, = 1  D[x]q, (x)  ' 

where q, (x ) E F[x ] and D [x ]ql(x ) C D [x ]q2(x ) C . . . C D [x ]q, (x ). In fact q. (x) 
has the form pl(x)'~ (x) "'"'-), where e (k, jk) may be possibly 0. 

Hence q, (x) ~ Fix ] since p~ (x) ~ F[x ] for j = 1,-- -, n. 

With this preparation, we will show that C(C(To))=F[To]. Suppose 

g E C(C(To)). Considering W as the left D[x]-module, we have C(To) = 
Endo[x](W). Since g E C(C(To)), g commutes with that endomorphism of V 

which is the identity on D[x]/D]x]q~(x) and sends the other components to 

zero. Hence g induces a D[x]-endomorphism g~ of D[x]/D[x]ql(x) and gl 

commutes with every D [x ]-endomorphism of D [x ]/D [x ]q~(x). Since D [x ]q L(x) 

is a two-sided ideal of D[x], every D [x]-endomorphism of D[x]/D[x]ql(x) is a 

right multiplication by an element of D[x] by Lemma 2. Hence gl is left 

multiplication by some a (x) ~ D [x ]. 
Let h~,x): W--* W be the left multiplication by a(x). Then by adopting G. 

Maxwell's technique in [7], g --= h~,,) on W and g is a polynomial in To with 

coefficients in F. Hence C(C(To))= F[To]. 
Finally, we claim that C(C(T)) is F-algebra isomorphic to C(C(To)). Since 

T E C(T) and To E C(To), we have 

and 

C( C( T) ) = C~.d~,t.,tv,( C( T)) = Cu.~o,.j,v~(Endot.l( V) ) 

C( C( To)) = C~.dDt.,,w,( C( To)) = CE.d~,.lCw)(EndD[.l(W)). 
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To define an F-algebra isomorphism from C(C(T)) to C(C(To)), recall that 
the list of D[x]-indecomposable summands of V and that of W coincide. 

Let U be in the list of D[x]-indecomposable direct summands of W and Pru 

be the projection from W (or V) onto U. Define a map o- from C(C(T)) to 

C(C(To)) by the rule 

Pru ot r (h)= h oPru 

for h E C(C(T)).  Then o- is an F-algebra isomorphism from C(C(T)) onto 

C(C(To)) = F[T0]. Note that o'(T ~) = T~ for any positive integer n, hence, or 

induces an F-algebra isomorphism from F[ T ]C  C(C(T))  onto F[ To]. Therefore 
F[T] = C(C(T))  and the proof is completed. [] 

In [5] there is an interesting open question: If the division ring D is algebraic 

over F, then, is the matrix algebra Mat, (D) algebraic for every n? 

As an application of Theorem 3 we show that the double centralizer theorem 
is related to the above question. 

THEOREM 4. Let D be a division ring with center F. Then the following 
conditions are equivalent: 

(a) For each positive integer n, the double centralizer property holds for all 
A E Mat~ (D). 

(b) Mat~ (D) is algebraic over F for each positive integer n. 

PROOF. By Theorem 3, (b) implies (a) immediately. Suppose (a) and let n be 

a positive integer. Take a left D-vector space V with dimension n. Then for any 
D-endomorphism T of V, there are T-invariant subspaces V1 and 112 of V such 

that V = V1G V2, T1 = T lv, is an isomorphism, T2 = T Iv 2 is nilpotent by 
Fitting's lemma. Extend T1 and T2 to D-endomorphisms T~ and T2 of V, by 

stipulating that T, = 0 on V2-, f o r / =  1, 2. Then T = 2P~ + T2 and TtT2 = T2Tt. 
By assumption (a), we have C(C(T~)) = F[T~]. But since T~ is invertible, T~ is 

algebraic over F. Obviously, /'2 is algebraic over F. Therefore ~P~ and 2P2 are 
algebraic over F. Now since T~ T2 = 7"2 Tt = 0, T = T, + T2 is algebraic over F. [] 

ACKNOWLEDGEMENTS 

The second author wishes to thank the University of Texas for its hospitality 

during the academic year 1981-82 and especially Professor Efraim P. Armen- 

dariz. In addition, we wish to thank the referee for his thoughtful comments 

which have greatly improved the exposition. 



68 E .P .  ARMENDARIZ AND J. K. PARK Isr. J. Math. 

REFERENCES 

1. E. P. Armendariz and J. K. Park, Completely prime ideals in polynomial ring over a division 
ring, to appear. 

2. R. E. Carlson and C. G. Cullen, Commutativity for matrices of quarternions, Can. J. Math. 20 
(1968), 21-24. 

3. J. Cozzens and C. Faith, Simple Noetherian Rings, Cambridge Univ. Press, Cambridge, 1975. 
4. N. Jacobson, The Theory of Rings, Am. Math. Soc. Survey 2, Providence, RI, 1943. 
5. N. Jacobson, The Structure o[Rings, Am. Math. Soc., Colloq. Publ., 37, Providence, RI, 1964. 
6. P. Lagerstrom, A proof of a theorem on commutative matrices, Bull. Am. Math. Soc. 51 (1945), 

535-536. 
7. G. Maxwell, On double commutators, Linear Algebra & Appl. 4 (1971), 283-284. 
8. J. H. M. Wedderburn, Lectures on Matrices, Am. Math. Soc., Colloq. Publ., 17, Providence, 

RI, 1934. 
9. W. L. Werner, A double centralizer theorem for simple associative algebras, Can. J. Math. 21 

(1969), 477--478. 

DEPARTMENT OF MATHEMATICS 
THE UNIVERSITY OF TEXAS 

AUSTIN, TX 78712 USA 

Current address of second author 
DEPARTMENT OF MATHEMATICS 

BUSAN NATIONAL UNIVERSITY 
BUSAN 607, KOREA 


