THE DOUBLE CENTRALIZER THEOREM FOR DIVISION ALGEBRAS

BY

EFRAIM P. ARMENDARIZ AND JAE KEOL PARK

ABSTRACT

Assume V is a finite-dimensional vector space over a division ring D having center F. It is shown that if $T \in End$ _{D} (V) is algebraic over F then the double centralizer $C(C(T))$ of T is the set $F[T]$ of all polynomials in T with coefficients from F. Consequently, each $n \times n$ matrix ring over D is an algebraic *F*-algebra if and only if $C(C(T)) = F[T]$ for all T and all finite-dimensional V.

Let D be a division ring with center F and let V be a finite dimensional (left) vector space over D. For any subset X of the algebra $\text{End}_D(V)$ of Dendomorphisms of V, we denote the *centralizer* of X in $\text{End}_D(V)$ by

$$
C(X) = \{ B \in \text{End}_D(V) \mid AB = BA \text{ for all } A \in X \}.
$$

In particular, for T in $\text{End}_D(V)$ the centralizer $C(T)$ of T is the set of all D-endomorphisms of V which commute with T and the *double centralizer* $C(C(T))$ of T is the set of all D-endomorphisms which commute with every D-endomorphism which commutes with T.

When D is commutative, the double centralizer theorem, $C(C(T)) = F[T]$ for every D-endomorphism T of V , is a well-known classical theorem ([6] and [8, p. 106]).

In the noncommutative division ring case, R. Carlson and C. Cullen [2] have established this theorem when D is the real quarternion division algebra. Moreover, W. Werner [9] has extended this result to the case when D is a finite dimensional central division algebra.

But we note that the double centralizer theorem may not be true in the general division algebra case. In particular, if the vector space V is D itself and $C(C(T)) = F[T]$, T is necessarily algebraic over F, since T^{-1} is in $C(C(T))$.

Received May 20, 1982 and in revised form October 15, 1982

Thus if D has an element transcendental over its center F , then $C(C(T))$ properly contains *F[T]* (compare with [7]).

However, in this paper we will obtain the double centralizer theorem in the case when the given D -endomorphism T of V is algebraic over F . Furthermore, as an application of this general result, we show the equivalence of the double centralizer property and the algebraicity of $Mat_n(D)$, the $n \times n$ matrix algebra over D.

We start with the following well-known

LEMMA 1. For a two-sided ideal I of $D[x]$ there exists a monic polynomial $f(x)$ in $F[x]$ such that $I = D[x]f(x)$. In particular, if I is prime, then $f(x)$ is *irreducible in F[x].*

PROOF. Since $D[x]$ is a principal (left and right) ideal domain, there is a monic polynomial $f(x)$ in $D[x]$ of least degree such that $I = D[x]f(x)$. For any $d \in D$, $r(x) = df(x) - f(x)d \in I$ and deg $r(x) < deg f(x)$. Hence $r(x) = 0$ and so $f(x) \in F[x]$.

For a left ideal A of a ring *R*, $I(A) = \{r \in R \mid Ar \subset A\}$ is a subring of R and $I(A)$ is the largest subring of R in which A is a two-sided ideal. We call $I(A)$ the *idealizer* of A in R.

LEMMA 2. *Let R be a ring with identity and A be a left ideal. Then* $\text{End}_{R}(R/A) \cong I(A)/A$. That is, every R-endomorphism of R/A is a righ *multiplication by an element of I(A).*

PROOF. See e.g. [3, p. 24].
$$
\square
$$

Let Ann(M) denote the annihilator of M in $D[x]$, which is a two-sided idea of $D[x]$.

THEOREM *3. Let V be a finite dimensional left vector space over D. Ther* $C(C(T)) = F[T]$ for every $T \in$ End_p(V) which is algebraic over F.

PROOF. For $\Sigma d_i x^i \in D[x]$ and $v \in V$, define

$$
\left(\sum d_i x^i\right)\cdot v=\sum d_i T^i(v).
$$

Then V is a left $D[x]$ -module and $Ann(V) \neq 0$ since T is algebraic over F. Ther $C(T) = \text{End}_{D(x)}(V)$, hence, in order to calculate $C(C(T))$ we are actually determining the center of the ring $\text{End}_{D[x]}(V)$. Now V can be expressed as direct sum of cyclic $D[x]$ -modules, $V \approx D[x]/q_1 \bigoplus \cdots \bigoplus D[x]/q_k$ where each α

is a left ideal of $D[x]$ and $q_1 \subseteq q_2 \subseteq \cdots \subseteq q_k$ [4, chapter 3]. By Lemma 2, each $D[x]$ -endomorphism of $D[x]/q_i$ is given by a right multiplication by an element of $I(q_i)$ and $I(q_i) = D[x]$ only if q, is an ideal of $D[x]$. Since it is not immediately evident that the q_i 's can be chosen to be ideals of $D[x]$, we will replace V and T by a module W and linear transformation T_0 so that the cyclic decomposition of W is given by ideals of $D[x]$ and $C(C(T_0)) \approx C(C(T))$ as F-algebras. We proceed to the details.

Put $B = \text{Ann}(V)$. Then by Lemma 1, there is a non-zero polynomial $f(x) \in$ $F[x]$ such that $B = D[x]f(x)$.

Decompose $f(x) = p_1(x)^{m_1} p_2(x)^{m_2} \cdots p_n(x)^{m_n}$ into monic irreducible polynomials in $F[x]$, where m_1, \dots, m_n are positive integers.

Let

$$
B_i = \mathrm{Ann}(p_i(x)^{m_i}D[x]),
$$

and let

$$
V^{(i)} = B_i V
$$
 for $i = 1, 2, 3, \dots, n$.

Then $V \cong \bigoplus \sum_{i=1}^n V^{(i)}$ as left $D[x]$ -modules and Ann($V^{(i)}$) = $D[x]p_i(x)^{m_i}$. In particular, each $V^{(i)}$ is T-invariant.

For $i = 1, 2, \dots, n$, we have a decomposition

$$
V^{(i)} = W^{(i,1)} \bigoplus W^{(i,2)} \bigoplus \cdots \bigoplus W^{(i,k)}.
$$

into indecomposable cyclic $D[x]$ -modules $W^{(i,j)}$, $1 \leq j \leq k$, and Ann $(W^{(i,j)})$ = $D[x]p_i(x)^{e(i,j)}$ for suitable positive integers $e(i,j)$ with $m_i = e(i, 1) \geq e(i, 2) \geq$ $\cdots \geq e(i, k_{i})$. Again, each $W^{(i,j)}$ is T-invariant.

By [4, theorem 20, p. 45], for $i = 1, \dots, n$ we have a decomposition

$$
\frac{D[x]}{D[x]p_i(x)^{e(i,j)}} = \bigoplus \sum \frac{D[x]}{D[x]q_{ij}(x)},
$$

where the sum is finite and $D[x]/D[x]q_{ij}(x)$ is an indecomposable $D[x]$ -module which is isomorphic to $W^{(i,j)}$ for $j = 1, \dots, k_i$.

Now let

$$
W=\bigoplus\sum_{i=1}^n\sum_{j=1}^{k_i}\frac{D[x]}{D[x]p_i(x)^{e(i,j)}}.
$$

Thus W is a direct sum of modules U_{ij} and each U_{ij} is a direct sum of a finite number of copies of the indecomposable $D[x]$ -module $W^{(i,j)}$. Hence the indecomposable direct summands of W and V coincide. We use T to define a

D-endomorphism T_0 on W as follows. Each U_n is a direct sum of T-invariant subspaces. Thus T_0 on U_{ij} is the direct sum of T applied on each summand. In turn W is a direct sum of the U_u so T_0 on W is the direct sum of T_0 on the U_u . Then it may be easily checked that $f(T_0) = 0$ on W, since $f(T) = 0$ on V. Moreover, $F[T] \cong F[T_0]$ as F-algebras via the map which sends T to T_0 and fixes $F₁$

For $\Sigma d_i x^i \in D[x]$ and $w \in W$, define an operation \cdot by

$$
\left(\sum d_i x^i\right)\cdot w=\sum d_i T_0(w).
$$

Then this operation \cdot is just the left D[x]-module operation on W, since the left $D[x]$ -module V is just the $D[x]$ -module $\bigoplus \Sigma D[x]/D[x]q_{ij}(x)$.

We rearrange summands of W so that

$$
W = \bigoplus \sum_{i=1}^l \frac{D[x]}{D[x]q_i(x)},
$$

where $q_i(x) \in F[x]$ and $D[x]q_i(x) \subset D[x]q_2(x) \subseteq \cdots \subseteq D[x]q_i(x)$. In fact $q_i(x)$ has the form $p_1(x)^{e(1,j_1)}p_2(x)^{e(2,j_2)}\cdots p_n(x)^{e(n,j_n)}$, where $e(k, j_k)$ may be possibly 0. Hence $q_i(x) \in F[x]$ since $p_i(x) \in F[x]$ for $j = 1, \dots, n$.

With this preparation, we will show that $C(C(T_0))=F[T_0]$. Suppose $g \in C(C(T_0))$. Considering W as the left $D[x]$ -module, we have $C(T_0)$ = End_{$D[x]$}(W). Since $g \in C(C(T_0))$, g commutes with that endomorphism of V which is the identity on $D[x]/D[x]q_1(x)$ and sends the other components to zero. Hence g induces a $D[x]$ -endomorphism g_1 of $D[x]/D[x]q_1(x)$ and g_1 commutes with every $D[x]$ -endomorphism of $D[x]/D[x]q_1(x)$. Since $D[x]q_1(x)$. is a *two-sided* ideal of $D[x]$, every $D[x]$ -endomorphism of $D[x]/D[x]q_1(x)$ is a right multiplication by an element of $D[x]$ by Lemma 2. Hence g_1 is left multiplication by some $\alpha(x) \in D[x]$.

Let $h_{\alpha(x)}: W \to W$ be the left multiplication by $\alpha(x)$. Then by adopting G. Maxwell's technique in [7], $g = h_{\alpha(x)}$ on W and g is a polynomial in T_0 with coefficients in F. Hence $C(C(T_0)) = F[T_0]$.

Finally, we claim that $C(C(T))$ is F-algebra isomorphic to $C(C(T_0))$. Since $T \in C(T)$ and $T_0 \in C(T_0)$, we have

$$
C(C(T)) = C_{\text{End}_{D[x]}(V)}(C(T)) = C_{\text{End}_{D[x]}(V)}(\text{End}_{D[x]}(V))
$$

and

$$
C(C(T_0)) = C_{\text{End}_{D[x]}(W)}(C(T_0)) = C_{\text{End}_{D[x]}(W)}(\text{End}_{D[x]}(W)).
$$

Vol. 45, 1983 DIVISION ALGEBRA 67

To define an F-algebra isomorphism from $C(C(T))$ to $C(C(T_0))$, recall that the list of $D[x]$ -indecomposable summands of V and that of W coincide.

Let U be in the list of $D[x]$ -indecomposable direct summands of W and Pr_u be the projection from W (or V) onto U. Define a map σ from $C(C(T))$ to $C(C(T_0))$ by the rule

$$
\mathrm{Pr}_{U} \circ \sigma(h) = h \circ \mathrm{Pr}_{U}
$$

for $h \in C(C(T))$. Then σ is an F-algebra isomorphism from $C(C(T))$ onto $C(C(T_0)) = F[T_0]$. Note that $\sigma(T^*) = T_0^*$ for any positive integer *n*, hence, σ induces an F-algebra isomorphism from $F[T] \subset C(C(T))$ onto $F[T_0]$. Therefore $F[T] = C(C(T))$ and the proof is completed.

In $[5]$ there is an interesting open question: If the division ring D is algebraic over F, then, is the matrix algebra $Mat_n(D)$ algebraic for every n?

As an application of Theorem 3 we show that the double centralizer theorem is related to the above question.

THEOREM 4. *Let D be a division ring with center F. Then the following conditions are equivalent:*

(a) *For each positive integer n, the double centralizer property holds for all* $A \in \text{Mat}_n(D)$.

(b) $Mat_n(D)$ *is algebraic over F for each positive integer n.*

PROOF. By Theorem 3, (b) implies (a) immediately. Suppose (a) and let n be a positive integer. Take a left D -vector space V with dimension n. Then for any D-endomorphism T of V, there are T-invariant subspaces V_1 and V_2 of V such that $V = V_1 \oplus V_2$, $T_1 = T|_{V_1}$ is an isomorphism, $T_2 = T|_{V_2}$ is nilpotent by Fitting's lemma. Extend T_1 and T_2 to D-endomorphisms \bar{T}_1 and \bar{T}_2 of V, by stipulating that $\bar{T}_i = 0$ on V_{2-i} for $i = 1, 2$. Then $T = \bar{T}_1 + \bar{T}_2$ and $\bar{T}_1\bar{T}_2 = \bar{T}_2\bar{T}_1$.

By assumption (a), we have $C(C(T_1)) = F[T_1]$. But since T_1 is invertible, T_1 is algebraic over F. Obviously, T_2 is algebraic over F. Therefore \bar{T}_1 and \bar{T}_2 are algebraic over F. Now since $\bar{T}_1 \bar{T}_2 = \bar{T}_2 \bar{T}_1 = 0$, $T = \bar{T}_1 + \bar{T}_2$ is algebraic over F. \Box

ACKNOWLEDGEMENTS

The second author wishes to thank the University of Texas for its hospitality during the academic year 1981-82 and especially Professor Efraim P. Armendariz. In addition, we wish to thank the referee for his thoughtful comments which have greatly improved the exposition.

REFERENCES

1. E. P. Armendariz and J. K. Park, *Completely prime ideals in polynomial ring over a division ring,* to appear.

2. R. E. Carlson and C. G. Cullen, *Commutativity for matrices of quarternions,* Can. J. Math. 20 (1968), 21-24.

3. J. Cozzens and C. Faith, *Simple Noetherian Rings,* Cambridge Univ. Press, Cambridge, 1975.

4. N. Jacobson, *The Theory of Rings,* Am. Math. Soc. Survey 2, Providence, RI, 1943.

5. N. Jacobson, The *Structure o[Rings,* Am. Math. Soc., Colloq. Publ., 37, Providence, RI, 1964.

6. P. Lagerstrom, *A proof of a theorem on commutative matrices,* Bull. Am. Math. Soc. 51 (1945), 535-536.

7. G. Maxwell, *On double commutators,* Linear Algebra & Appl. 4 (1971), 283-284.

8. J. H. M. Wedderburn, *Lectures on Matrices,* Am. Math. Soc., Colloq. Publ., 17, Providence, RI, 1934.

9. W. L. Werner, *A double centralizer theorem for simple associative algebras,* Can. J. Math. 21 (1969), 477-478.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF TEXAS AUSTIN, TX 78712 USA

Current address of second author DEPARTMENT OF MATHEMATICS BUSAN NATIONAL UNIVERSITY BUSAN 607, KOREA